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Abstract
This study aims to investigate the virtual water utilization efficiency and its influencing factors across 14 industries of China's
tertiary industry during 2002-2020. By applying the input-output model, Shephard water distance function, and stochastic
frontier analysis (SFA), this research incorporates multi-factor analysis with the total virtual water footprint as the water input
indicator. Results show that the annual total virtual water footprint of the tertiary industry exhibited fluctuating changes,
influenced by macroeconomic conditions, industrial structure, and water-saving policies. The overall virtual water utilization
efficiency increased, though the growth rate decelerated, with significant disparities across industries: high-efficiency
industries were concentrated in specific fields, while low-efficiency industries were mostly traditional service industries.
Stochastic frontier analysis indicates that most estimation errors originated from the technical inefficiency term. Technical
inefficiency analysis reveals that factors such as water resource endowment are significantly correlated with water-related
technical inefficiency. This study provides a basis for deepening the understanding of water resource utilization in the tertiary
industry and offers references for optimizing water resource management policies.
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Introduction
Water is the source of life and plays a crucial role in economic

and social development. With rapid global economic growth and
continuous population expansion, water scarcity has become an
increasingly severe issue, serving as a key constraint on national
development (Qian et al., 2011). As a country with relatively
limited water resources, China's per capita water availability is far
below the global average, exacerbating water supply-demand
conflicts. In this context, improving water resource utilization
efficiency has emerged as a critical measure to alleviate water
stress and achieve sustainable development (Sun & Zhao, 2014).
Among various industries, the tertiary industry is vital for
optimizing economic structures, promoting employment, and
driving economic growth (Yang, 2018). In recent years, China's
tertiary industry has witnessed a steady increase in its GDP share,
accompanied by expanding water consumption. However, research
on water resource utilization efficiency in the tertiary industry
remains insufficient, failing to meet the needs of precise water
management (Huang et al., 2022). Therefore, investigating the
water resource utilization efficiency of the tertiary industry and its
influencing factors is of significant practical importance for rational
water allocation and sustainable development of the sector.

Scholars worldwide have conducted extensive research on water
resource utilization efficiency. Early studies primarily employed
single-factor indicators (Mo et al., 2004; Li et al., 2008), such as
water consumption per unit of output, which are simple and
intuitive but unable to comprehensively reflect the overall
efficiency of water use. Subsequently, data envelopment analysis

(DEA) gained popularity due to its advantages in handling multi-
input and multi-output problems without predefined production
functions. Many scholars have applied DEA and its extended
models to measure and analyze water resource utilization efficiency
across different regions and industries (He et al., 2017; Molinos et
al., 2016; Cheng et al., 2016; Hu et al., 2018; Deng, 2019; Adler,
N., Friedman, L., & Sinuany-Stern, Z. 2002). However, DEA has
limitations, including its inability to account for random factors and
statistical noise, as well as its lack of direct analysis of technical
efficiency determinants (Chambers et al., 1998).

To address these issues, stochastic frontier analysis (SFA) based
on the Shephard distance function has increasingly drawn attention
(Wang & Li, 2021; Yang, 2012; Wang & Dong, 2024; Chen & Liu,
2022; Xing et al., 2018). This method not only measures efficiency
and analyzes influencing factors simultaneously but also
incorporates the impact of randomness on outputs, yielding more
scientific and reliable results (Li & Fan, 2009). In terms of research
perspectives, previous studies often focused on physical water
consumption, whereas the concept of virtual water has opened new
avenues for water resource research (Hoekstra & Hung, 2003).
Virtual water refers to "invisible" water embedded in goods and
services. Analyzing water resource efficiency from the virtual
water perspective allows for comprehensive consideration of both
direct and indirect water use across industries, providing a more
holistic understanding of actual water utilization (Sun et al., 2025;
Cai et al., 2020; Wu et al., 2022). Although some studies have
adopted this perspective, research specifically targeting the tertiary
industry remains underdeveloped (Zhang et al., 2010).
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This study aims to fill this gap by examining China's tertiary
industry. Using input-output models, the Shephard water distance
function, and stochastic frontier analysis (SFA), we investigate the
virtual water utilization efficiency and its determinants across 14
industries of the tertiary industry from 2002 to 2020. We construct
a comprehensive analytical framework by treating total virtual
water footprint as the water input indicator and integrating multiple
factors, including labor, capital, technological R&D, pollution
control, and subsector value added as the output. Through
systematic analysis of trends in virtual water footprints, dynamic
evolution of virtual water utilization efficiency, and key efficiency
determinants, this research provides a scientific basis for
formulating targeted water management policies and promoting
efficient water use in the tertiary industry.

Methods
Input-output model construction
Compilation of the Water Resources Input - Output Table

Using the merged sectoral input - output table, the water - use
data of each sector are taken as the water - related inputs and
outputs to compile the water resources input - output table (Table
1). The direct consumption coefficient matrix can be calculated
from the input - output table (Leontief & Ford, 1970):
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Virtual Water Accounting

(1) The direct water - use coefficient reflects the direct water - use
intensity of sector i, representing the amount of water resources

directly consumed by sector i for each unit of total output produced
(Xu et al., 2002). The calculation formula is as follows:
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By calculating the direct water - use coefficients of all sectors,
we can obtain the row matrix of direct water - use coefficients:
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(2) The total water - use coefficient reflects the total water - use
intensity of sector i, representing the sum of direct and indirect
water consumption for each unit of total output produced by
sector i (Xu et al., 2002). The import part needs to be excluded
during the calculation:
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By calculating the total water - use coefficients of all sectors, the
row matrix of total water - use coefficients can be obtained,
where DWC is the matrix of direct water - use coefficients, I is the
identity matrix, B is the diagonal matrix of domestic production
proportion, and A is the direct consumption coefficient matrix.

(3) The formula for calculating the virtual water of each sector is as
follows:

TW TWC TFU 
In the formula: TWC is the row matrix of total water - use
coefficients, TFU is the column matrix composed of the total final
use of each sector in the input - output table, and TW is the matrix
composed of the virtual water footprints consumed by each sector.

Table 1 Input-Output Table
Intermediate Use Final Use

Impor t Total
OutputSector 1 … Sector n

Final
Consumption
Expenditure

Expor t
Total
Final
Use

Sector 1 … TC1 EX1 TFU1 IM1 X1

… … … … … … … … …

Sector n … TCn EXn TFUn IMn Xn

Value Added V1 … Vn
Total Input X1 … Xn

Water W1 … Wn

Shephard Water Resource Distance Function
Before constructing the distance function, a production

technology set must first be defined. Based on the original three -
factor framework (capital, labor, and personnel), two additional
indicators are incorporated: technological R&D
investment and pollution control investment. Thus, the input factors
include capital input (K), labor (L), water resources (W),
technological R&D (R), and pollution control (S), with sectoral
value added as the output factor. The production technology set is
expressed as:

( {( , , , , , ) : ( , , , , ) can produce }P K L W R S Y K L W R S Y
Following Zhou et al.'s construction of the Shephard energy
distance function (Zhou et al., 2012), the Shephard water resource
distance function is defined as:
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In the formula: P (K, L, W, R, S, Y) represents the possible set of
outputs that can be produced under the input combination of capital
(K), labor (L), water resources (W), technological R & D (R), and
pollution control (S) under certain production technology
conditions. The distance function De represents the maximum
contraction ratio α of water resource input while keeping the output
unchanged.

According to this definition, W/De is expressed as the optimal water
resource input; the ratio of the optimal water resource input to the
actual input is expressed as the water resource utilization efficiency
TWE. Therefore, the formula is expressed as follows:
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When De (K, L, W, R, S, Y) = 1, it means that it is currently on the
production frontier, and the water resource utilization efficiency at
this time is 1.

Construction of the Stochastic Frontier Model
In terms of the selection of the functional model, since the Cobb

- Douglas production function has relatively more limitations and
less flexibility (Battese & Broca, 1997), this paper adopts the trans
- log production function in the selection of the functional form:
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Here, Xjit represents the input variable corresponding to j (for
example, when j = K, XKit = Kit, and so on). In the
formula: i represents the industry; t represents the year.

Kit, Lit, Wit, Rit, Sit, and Yit respectively represent the fixed assets,
the number of employees, the virtual water consumption, the
technological R & D investment, the pollution control investment,
and the added value of industry i in year t; vit is the random error
term, which follows the standard normal distribution;  is the
parameter to be estimated. Through the deformation and derivation
of the formula, the stochastic frontier function model in the
standard form can be obtained:
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Here, Xjit represents the input variable correspond-ing to j (for
example, when j = K, XKit = Kit, and so on).

), , , ,( ,it e it it it it it itu lnD K L W R S Y re-presents the water resource
inefficiency term of industry i in year t, and it follows the truncated
normal distribution 2,( );it itN m  ( )it itv u represents the composite
error term. Explanatory variables are introduced for the water
resource inefficiency term: environmental protection investment
(EPI), water resource endowment (WRE), technological
development level (TDL), education development level (EDL),
industrial structure (IS), urbanization process (UP), economic
development level (PG), and industry endowment (IE). At this time,
the water resource inefficiency function is:
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Among them, Wit is the random disturbance term of the water
resource inefficiency function, and αi is the estimated parameter.
According to the setting of the technical inefficiency term by

Battese and Corra (Battese & Corra, 1977), let
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which represents the proportion of the water resource inefficiency
term in the composite error term. The closer the ratio is to 1, the
greater the influence proportion of the water resource inefficiency
term.

Data Sources and Variable Descriptions
This study uses China's Input-Output Tables (2002, 2007, 2010,

2012, 2015, 2020) to integrate sectors into 19 industries per GB/T
4754-2017, selecting 14 tertiary sectors as decision units, Specific
sector names and their codes are shown in Table 2. Panel data
across 8 years explore their 2002-2020 water efficiency and
influences. Water use data from China Water Resources Bulletin
are determined by the "water production and supply" input
proportions in Input-Output Tables. Tertiary industry water use is
calculated by subtracting urban household water from total urban
domestic water, reflecting public service consumption. Relevant
literature informs the selection of input-output and influencing
variables for efficiency analysis.

Table 2 Sectors and Their Codes
Code Industry Code Industry Code Industry

01 Wholesale and Retail Trades 06 Real Estate Industry 11 Education

02 Transportation, Storage and Post
Industry 07 Leasing and Business Services 12 Health Care and Social Work

03 Accommodation and Catering
Services 08 Scientific Research and

Technical Services 13 Culture, Sports and
Entertainment Industry

04
Information Transmission,
Software and Information

Technology Services
09

Water Conservancy,
Environment and Public

Facilities Management Industry
14

Public Administration, Social
Security and Social

Organizations

05 Financial Industry 10 Resident Services, Repair and
Other Services

Input - Output Variable System
In this section, an input-output indicator system covering six

dimensions is constructed to comprehensively reflect the multi-
factor driving relationships of virtual water resource utilization
efficiency. The input-output model is used to quantify the

correlation mechanisms among variables, providing data support
for subsequent efficiency calculations. Specific indicator data, their
sources, and explanations are presented in Table 3.

Table 3 Data Sources and Explanations for Input-Output Variables
Variable Indicator Definition Data Source Explanation

Water Resource
Input

Total Virtual Water
Footprint

China Statistical Yearbook and China Water
Resources Bulletins

Calculated based on the input - output
model

Labor Input Number of
Employees China Statistical Yearbook Reflects the scale of labor factors

Capital Input Investment in Fixed
Assets China Statistical Yearbook Reflects the accumulation of physical

capital
Technological R&D Expenditure on R&D Industry statistical data and Science and Represents the intensity of investment in
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Input Technology Statistical Yearbook technological innovation
Pollution Control

Input
Total Pollution
Control Funds China Environmental Statistical Yearbook Measures the scale of environmental cost

investment

Economic Output Industry Added
Value China Statistical Yearbook Reflects the final results of production

activities
Influencing Factor Variable System

In this section, eight key socio-economic variables are selected
to systematically analyze their mechanisms of action on water
resource utilization efficiency. Through the construction of multi-
dimensional indicators, the comprehensive impacts of factors such
as regional differences, structural characteristics, and policy

orientations are revealed. Specific indicator data, their sources, and
explanations are presented in Table 4.

Table 4 Influencing Factor Variables: Data Sources and Explanations
Variable Indicator Definition Data Source Explanation

Water Resource Endowment Per Capita Water Resources China Water Resources
Bulletins

Reflects the constraints of natural
conditions

Industrial Structure Proportion of Tertiary Industry
Output Value in GDP China Statistical Yearbook Reflects the degree of optimization of

the economic structure

Industry Endowment Ratio of Added Value to the
Number of Employees Industry statistical data Determines the technology - or labor -

intensive nature of the industry

Urbanization Process Proportion of Urban Population in
the Total Population China Statistical Yearbook Measures the stage of social

development
Economic Development

Level Per Capita GDP Provincial statistical year
books

Reflects the characteristics of the
economic development stage

Scientific and Technological
Development

Number of Patent Applications
Accepted

Website of the National
Bureau of Statistics

Represents the technological
innovation ability

Education Development Number of University Graduates Website of the National
Bureau of Statistics

Reflects the accumulation of human
capital

Degree of Environmental
Protection Investment

Proportion of Environmental
Protection Investment in GDP

China Environmental
Statistical Yearbook

Reflects the intensity of investment in
environmental governance

Results Analysis
Analysis of Sectoral Virtual Water Footprint
Measurement Results

Based on calculations from the input-output model, the annual
total virtual water footprint and its growth rate for the 14 sectors in
China’s tertiary industry during the period from 2002 to 2020 are
presented in Figure 1, while the multi-year averages and annual
growth rates of sectoral virtual water footprints are shown in Figure
2.

Figure 1 Annual Total Virtual Water Footprint and
Growth Rate Trend Chart

Figure 1 reveals that the annual total virtual water footprint
exhibits significant fluctuating characteristics across different years:
it showed a continuous upward trend from 2002 to 2005, increasing
from 759.449127 billion m³ to 821.94952 billion m³, with a growth
rate of 8.23%. This period coincided with a high-speed economic
expansion in China, where the average annual GDP growth rate
exceeded 10%. The accelerated processes of industrialization and
urbanization directly drove up water demand. A downward trend
was observed from 2005 to 2010, followed by a resurgence from
2010 to 2015, and a new round of decline from 2015 to 2020.

Such cyclical fluctuations are closely linked to macroeconomic
cycles, industrial structure evolution, and advancements in water
resource management technologies. After 2005, the promotion of
water-saving technologies and improvements in production
efficiency reduced the intensity of water consumption in high-
water-use sectors. With the gradual recovery of the global economy
from the financial crisis in 2010, the rapid expansion of domestic
service industries once again increased water demand. Since 2015,
the deepening of supply-side structural reforms has shifted the
industrial structure toward low-water-consumption and high-value-
added sectors. The elimination of outdated production capacity and
the popularization of green production technologies effectively
curbed the growth of virtual water footprints.

Figure 2 Trend Chart of Multi-year Average and Average
Annual Growth Rate of Virtual Water

The data indicate a significant interactive relationship between
water demand characteristics in different economic growth stages,
improvements in production technical efficiency, and industrial
structure optimization. The early high-speed growth was
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accompanied by a synchronous increase in water demand, while in
later stages, technological progress and industrial restructuring
gradually enhanced water resource utilization efficiency, driving
the total virtual water footprint into a downward trajectory.An
analysis of the multi-year averages of sectoral virtual water
consumption in Figure 2 shows that the accommodation and
catering services, education, culture, sports and entertainment, and
public administration and social organization sectors exhibit
relatively high values. This is likely due to their intensive
involvement in infrastructure construction and daily operational
water use—such as water for catering services, daily water
consumption in schools, and water for operating cultural and sports
venues. In contrast, the financial industry, health care, social
security, and social welfare sectors have lower multi-year average
virtual water consumption, which is related to their service- and
office-oriented nature with fewer physical water-consuming links.

Regarding the average annual growth rates of sectoral virtual
water consumption: industries such as scientific research and
technical services, information transmission, computer services,
and software show relatively high growth rates. In recent years,
these sectors have developed rapidly with expanding scales, and
activities such as cooling for big data centers and the expansion of
office spaces have increased water demand. Conversely, sectors
like wholesale and retail trade, resident services and other services,
and education have negative average annual growth rates. This is
speculated to result from continuous optimization of water
management and improvements in water use efficiency within
these industries, as well as reduced water demand influenced by
factors such as industrial restructuring and changing market
environments.

Analysis of Virtual Water Resource Utilization
Efficiency Measurement Results

Using StataMP software, the virtual water resource utilization
efficiency values for 14 sectors in the tertiary industry across
multiple years from 2002 to 2020 were calculated, along with the
multi-year averages for each sector and the annual average across
all sectors, as shown in Table 5.

From 2002 to 2020, the overall virtual water resource utilization
efficiency of the tertiary industry exhibited an upward trend, with
the average efficiency across all sectors increasing from 0.393 to
0.594—a cumulative growth of 51.15%, as shown in fig 5. This
period can be divided into two stages:
2002–2010: High-Speed Growth Period, with a compound

annual growth rate (CAGR) of 2.39%. The fastest growth occurred
from 2002 to 2005, reaching an annualized rate of 3.44%.
2010–2020: Slowdown Period, with the CAGR decreasing to

1.95%. The growth further moderated to 1.65% from 2017 to 2020,
reflecting diminishing marginal returns and a narrowing room for
technological improvement.

As shown in Figure 3, the efficiency gradient exhibits distinct
stratification, with a polarization between high-efficiency
sectors (mean ≥ 0.7) and low-efficiency sectors (mean ≤ 0.35).
High-efficiency sectors are concentrated in technology-intensive
and policy-oriented fields (e.g., financial industry, environmental
management), while low-efficiency sectors are mostly labor-
intensive and traditional service industries (e.g., accommodation
and catering, resident services).
High-efficiency sectors show stable growth:
Water Conservancy, Environment, and Public Facilities

Management (efficiency value 0.934 in 2020) and the Financial
Industry (0.874) consistently lead, with CAGRs of 0.45% and
0.88%, respectively. The former benefits from direct links to water
resource management and rapid technological iteration, while the
latter reduces physical resource dependence through digital trans-
formation.
Mid-efficiency sectors demonstrate significant growth:
Information Transmission, Software, and In-formation

Technology Services increased from 0.338 in 2002 to 0.580 in
2020—a substantial rise. As a knowledge-and-technology-intensive
sector, continuous technological progress has optimized water use
processes and promoted the adoption of water-saving technologies
and equipment. Leasing and Business Services grew from 0.436 in
2002 to 0.659 in 2020, likely driven by improved industry
standards, increased corporate focus on sustainable development,
and implementation of water-saving measures.

Table 5 Table of Virtual Water Resource Utilization Efficiency by Sector during 2002–2020

Industry Year Mean2002 2005 2007 2010 2012 2015 2017 2020
01 0.230 0.264 0.299 0.335 0.371 0.408 0.443 0.479 0.354
02 0.273 0.308 0.344 0.381 0.417 0.453 0.488 0.522 0.398
03 0.085 0.107 0.132 0.159 0.190 0.222 0.255 0.290 0.180
04 0.338 0.374 0.410 0.446 0.481 0.515 0.548 0.580 0.461
05 0.765 0.785 0.802 0.819 0.834 0.848 0.861 0.874 0.823
06 0.189 0.221 0.255 0.289 0.325 0.361 0.398 0.434 0.309
07 0.436 0.471 0.506 0.539 0.571 0.602 0.631 0.659 0.552
08 0.617 0.645 0.672 0.697 0.721 0.744 0.765 0.784 0.706
09 0.875 0.886 0.896 0.905 0.913 0.921 0.928 0.934 0.907
10 0.140 0.168 0.199 0.231 0.265 0.301 0.337 0.373 0.252
11 0.422 0.458 0.493 0.526 0.559 0.590 0.620 0.649 0.540
12 0.178 0.209 0.242 0.277 0.312 0.349 0.385 0.421 0.297
13 0.742 0.762 0.782 0.800 0.817 0.832 0.847 0.860 0.805
14 0.212 0.245 0.280 0.315 0.351 0.388 0.424 0.460 0.334

Mean 0.393 0.422 0.451 0.480 0.509 0.538 0.566 0.594 0.500
Low-efficiency sectors lag in improvement:

Figure 3 Line Chart of Virtual Water Resource Utilization
Efficiency by Sector during 2002 - 2020
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Accommodation and Catering Services (multi-year mean 0.180)
only achieved 30.3% of the overall mean in 2020, with the gap
widening annually (from 0.308 in 2002 to 0.304 in 2020). Resident
Services (multi-year mean 0.252) also show slow progress. These
sectors suffer from fragmented operations, limited management
capacity of small and micro enterprises, and low penetration of
water-saving technologies.

Stochastic Frontier Analysis
The results of the stochastic frontier analysis are presented in

Table 6. From the overall model validity test, the model passes the
joint significance test (Wald chi2(5)), indicating that the selected
variables have overall explanatory power. The proportion of
technical inefficiency variance, gamma = 0.7544984, shows that
75.45% of the error originates from the technical inefficiency term,
with only 24.55% attributed to random noise.

The analysis of variable coefficients indicates that the estimated
coefficient of sectoral added value in the reciprocal of virtual water
consumption model is 0.4611978 and passes the significance test.
This positive correlation reflects the promoting effect of industrial
structure upgrading or technological intensification on water
resource utilization efficiency. The estimated coefficient of labor
input is -0.4588328, significantly negative, indicating that an
increase in labor input significantly raises the scale of water
resource input. The capital input variable did not pass the
significance test,showing its impact on water resource input is
statistically insignificant. The estimated coefficient of
technological R&D investment is 0.4795237 (at the 5%
significance level), suggesting that increased R&D investment
significantly reduces dependence on fresh water by promoting the
innovation and application of water-saving technologies and
improving the recycling efficiency of water resources. The
estimated coefficient of pollution control investment is 0.3691577
(at the 1% significance level), reflecting that increased
environmental governance investment encourages industries to
strengthen water resource protection and rational use—through
measures such as reducing wastewater discharge and improving
water quality—thereby significantly decreasing water resource
input. Additionally, the inefficiency decay rate (eta = 0.099) shows
that technical inefficiency decreases at an annual rate of 9.9%,
meaning the efficiency gap between industries narrows gradually
over time. However, the pace of improvement remains slow,
necessitating stronger policy intervention to accelerate efficiency
enhancement.

Table 6 Stochastic Frontier Model Regression Results
Variable Coefficient Std. Error z P>|z|

_cons 9.14949 2.309758 3.96 0.000
Sectoral Added

Value 0.4611978 0.1242231 3.71 0.000

Labor Input -0.4588328 0.1128231 -4.07 0.000
Capital Input -0.0382183 0.0714376 -0.53 0.593
Technological

R&D Input 0.4795237 0.2298477 2.09 0.037

Pollution
Control Input 0.3691577 0.1279462 2.89 0.004

/eta 0.0989736 0.0247375 4.00 0.000
gamma 0.7544984 0.1493111

Log likelihood -23.944448
Wald chi2(5) 63.11

Analysis of the Technical Inefficiency Surface
The technical inefficiency term of virtual water consumption is

analyzed using a fixed-effects model, with results presented in
Table 7. The model’s within-group R² is 0.7638, indicating strong
explanatory power of independent variables for intra-industry
efficiency fluctuations. However, the overall R² is low (0.2242),
primarily because the fixed-effects model strips out time-invariant
individual heterogeneity (rho = 0.943). The significance and
direction of core variables highlight that environmental protection
investment, technological innovation, and industrial structure
upgrading are key dynamic factors driving efficiency
improvements. Below is a detailed analysis of how each variable
influences the technical inefficiency term of water resources:
Water Resource Endowment (β = -2.2268, p < 0.01) confirms the
promoting effect of resource abundance on water-saving
technological innovation by reducing technical inefficiency.
Abundant water resources provide a tolerance space for industrial
technology trials, facilitating experimental improvements in water
use efficiency.
Industrial Structure (β = -7.9037, p < 0.01) exhibits the most
pronounced negative effect: a 1% increase in the tertiary industry’s
share reduces the technical inefficiency term by 7.90%. This
verifies the structural contribution of low-water-consumption
industries to efficiency enhancement, as a higher proportion of
tertiary sectors aligns with more water-efficient production patterns.
Technological Development (β = -3.2746, p <
0.01) and Education Level (β = -0.8513, p < 0.01) show
significant negative correlations, reflecting the roles of
technological innovation in process improvement and human
capital in management optimization, respectively. Technological
progress drives the adoption of water-saving technologies, while
educated labor enhances operational efficiency through better
resource management.
Environmental Protection Investment (β = -0.8149, p <
0.01) demonstrates a direct marginal effect: increased investment in
environmental governance improves water resource utilization
efficiency by upgrading sewage treatment facilities and promoting
water-saving technologies, thereby reducing waste and enhancing
reuse.
Notably, the positive effects of urbanization process (β =
14.8615, p < 0.01) and economic development level (β = 3.2532,
p < 0.01) reveal a dual-pressure mechanism. Urbanization
intensifies water supply-demand imbalances through population
concentration, while economic growth outpaces efficiency
improvements, leading to increased inefficient water
consumption. Industry endowment (β = 0.1680, p = 0.160) lacks
statistical significance, likely due to the complex relationship
between technical intensity and water use efficiency in the sampled
industries or limitations in data observation dimensions, which may
obscure clear associations.

Table 7 Technical Inefficiency Term Regression Results

Variable Coefficient Std. Error t P>|t|

Water Resource Endowment -2.226846 0.6982126 -3.19 0.007

Industrial Structure -7.903651 2.324279 -3.40 0.005

Industry Endowment 0.1679892 0.1126267 1.49 0.160

Urbanization Process 14.86153 4.516941 3.29 0.006

Economic Development 3.25316 0.9615347 3.38 0.005

https://doi.org/10.71113/JMSS.v2i3.306


JOURNAL OF MODERN SOCIAL SCIENCES Volume 2 Issue 3 , 2025, 201- 209
ISSN (P): 3078-4433 | ISSN (O): 3078-4441 Doi:10.71113/JMSS.v2i3.306

207

Scientific and Technological Development -3.27464 0.9695216 -3.38 0.005

Education Development -0.8513252 0.2509342 -3.39 0.005

Degree of Environmental Protection Investment -0.8149081 0.2438856 -3.34 0.005

rho 0.94295681

Overall R - squared 0.2242

Within R - squared 0.7638

Conclusion
This study employs an input-output model to measure the virtual

water footprint of 14 sectors in China’s tertiary industry from 2002
to 2020, and uses the Shephard water footprint distance function
and a stochastic frontier model to conduct an in-depth exploration
of virtual water resource utilization efficiency and its influencing
factors. The following conclusions are drawn:

Sectoral Virtual Water Footprint Measurement
From 2002 to 2020, the total annual virtual water footprint of the

tertiary industry exhibited fluctuating trends, primarily associated
with macroeconomic conditions, industrial structure adjustments,
and the implementation of water-saving measures. At the sectoral
level, accommodation and catering services, education, and other
sectors had relatively high multi-year average virtual water
consumption, while the financial industry, health care, and social
work sectors had lower values. Sectors such as scientific research
and technical services showed relatively high average annual
growth rates in virtual water consumption, whereas sectors like
wholesale and retail trade experienced negative growth.

Virtual Water Resource Utilization Efficiency
Measurement

Over 2002–2020, the overall virtual water resource utilization
efficiency of the tertiary industry showed an upward trend, though
the growth rate gradually slowed, reflecting diminishing marginal
returns and a narrowing scope for technological improvements. A
distinct efficiency gradient emerged: high-efficiency sectors,
concentrated in technology-intensive and policy-oriented fields,
demonstrated stable growth; mid-efficiency sectors showed
significant efficiency improvements; low-efficiency sectors, mostly
labor-intensive and traditional service industries, lagged in
progress.

Stochastic Frontier Analysis

The model passed the joint significance test, confirming the
overall explanatory power of the selected variables. Most of the
error was attributed to the technical inefficiency term. Sectoral
added value was positively correlated with virtual water
consumption, promoting water resource utilization efficiency;
increased labor input led to higher water resource input; capital
input had no significant impact on water resource input; increased
technological R&D and pollution control investments significantly
reduced water resource input. Technical inefficiency decreased at
an annual rate of 9.9%, but the pace of improvement remained
slow.

Technical Inefficiency Surface Analysis

Results from the fixed-effects model indicated strong
explanatory power of independent variables for intra-industry
efficiency fluctuations. Improvements in water resource
endowment, industrial structure, technological development,

education level, and environmental protection investment
significantly reduced the technical inefficiency term of water
resources. Conversely, urbanization and economic development
were associated with increased technical inefficiency, while
industry endowment had no significant effect, likely due to
complex correlations or data limitations.

Based on the research findings, the following recommendations
are proposed to further improve virtual water resource utilization
efficiency in the tertiary industry:

Optimize Industrial Structure for Low-Water-Consumption
Transitions

Continue to adjust the industrial structure toward low-water-
consumption and high-efficiency sectors by accelerating the
transformation and upgrading of water-intensive traditional service
industries. Encourage the development of technology-intensive and
knowledge-intensive service sectors with low water consumption,
thereby facilitating structural optimization and enhancing overall
water resource utilization efficiency.

Increase Investment in Water-Saving Technology
Innovation and Adoption

All sectors should prioritize research and development (R&D)
investments to drive the innovation and application of water-saving
technologies. Sectors with high average annual growth rates in
virtual water consumption should particularly focus on developing
and adopting advanced water-saving technologies and equipment to
improve water recycling efficiency and reduce reliance on fresh
water resources.

Strengthen Education and Environmental Awareness for
Sustainable Practices

Enhance educational levels and environmental consciousness by
strengthening specialized education in water resource management
at universities, cultivating professionals with water-saving
awareness and management capabilities. Through targeted
education and advocacy, raise environmental awareness among the
public and enterprises, prompting active adoption of water-saving
measures to improve utilization efficiency.

Expand Environmental Protection Investment for
Infrastructure and Technology Upgrades

Governments and enterprises should increase investments in
environmental protection projects, including sewage treatment and
water resource recycling, to modernize water treatment facilities
and promote the adoption of water-saving technologies and
equipment. Incentivize enterprises to implement environmentally
friendly and efficient production processes, thereby reducing water
waste and technical inefficiencies.

Balance Urbanization, Economic Growth, and Water
Resource Management
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Address the challenges of urbanization and economic
development by strengthening water resource management and
supply system construction. Rationalize urban water planning,
promote the use of water-saving appliances and infrastructure, and
enhance urban water utilization efficiency. During economic
growth, prioritize improvements in water resource efficiency to
avoid excessive consumption and waste, ensuring coordinated
development between economic progress and water resource
protection.

These recommendations align with the study’s empirical
insights, aiming to provide actionable strategies for achieving
sustainable water resource use in the tertiary industry through
structural optimization, technological innovation, human capital
development, and policy intervention.
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