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Abstract

The rapid diffusion of generative artificial intelligence (AIGC) technologies is accompanied by multiple risks, which profoundly impact
public acceptance and trust in the technology. This study integrates the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2)
and the Social Amplification of Risk Framework (SARF) to construct a theoretical model encompassing Risk Perception, System Trust, Risk
Trust, Behavioral Intention, and Risk Prevention Sensitivity. Based on 696 valid survey responses from Jiangsu Province, a Bayesian
Structural Equation Model (BSEM) is employed to empirically analyze the complex interactions among these variables. The results reveal
that both Risk Perception and System Trust significantly and positively influence Risk Trust, with System Trust exerting a stronger effect.
Furthermore, Risk Trust positively affects Behavioral Intention, while Risk Prevention Sensitivity demonstrates a significant negative
inhibitory effect. Based on these findings, the study proposes policy recommendations such as enhancing algorithmic transparency,
improving multi-stakeholder governance mechanisms, and strengthening public digital risk literacy to promote responsible innovation and
effective governance of AIGC technologies.
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Introduction potential negative impacts are difficult to predict and may be

irreversible. As a result, a more complex and subtle dynamic

Artificial Intelligence Generated Content (AIGC) technology is interaction exists between public Risk Perception and technological
undergoing rapid development and widespread diffusion. Its core trust (Lim et al., 2023). Extended studies based on the Technology

capabilities—such as text generation, image and video creation, Acceptance Model (TAM) have confirmed that System Trust—a
and cross-modal content generation—have profoundly transformed multidimensional and higher-order construct encompassing both
the logic of digital content production and cultural communication, technological reliability and institutional assurance—directly
while reshaping the value chain of the cultural industry. However, influences the formation of Risk Trust, and ultimately determines

alongside these technological advantages, a range of potential risks whether the public adopts the technology (Kaur & Arora, 2020).
has eme[ged, m_c]udm_g a]gorjth_[nic opac.i[y, lack of content The "dual-threshold effect" theory of Risk Prevention Sensitivity

credibility, and the accelerated spread of ethical biases (Liu et al., further indicates that moderate risk awareness can encourage
2023; Qin et al., 2021). The pace at which these risks spread has far prudent technology adoption. However, when Risk Prevention
outstripped the responsiveness of governance mechanisms, Sensitivity exceeds a critical threshold, it may trigger avoidance
resulting in a clear imbalance that constitutes the "Solow Paradox" and resistance toward the technology, thus hindering its broader
of technological governance (Aleshkovski, 2022). This imbalance dissemination (Gu et al., 2022).
has further triggered a "Collingridge dilemma"-style reflection However, traditional risk management research has largely been
within academia on responsible innovation and risk management— limited to the analysis of linear relationships and simplistic variable
namely, how to effectively identify and prevent systemic risks in expl(.)ratjon.. failing to effectively CﬂPth? the more. complex,
the early stages of technological evolution, in order to avoid nonlinear interactive effects among Risk Perception. trust
governance path dependency and social trust crises (Wong & mechanisms, and Behavioral Intention (Lin et al., 2024 ). Therefore,
Jensen, 2020).  Therefore, establishing a multidimensional risk it is urgent to adopt a complex systems perspective and leverage
assessment system for AIGC applications and clarifying the more advanced and robust modeling approaches to deeply analyze
nonlinear transmission mechanisms of risks across technological, the transmission pathways of AIGC-related risks and the dynamic
social, and institutional networks has become an urgent interaction mechanisms of public trust. In response, this study
requirement for achieving responsible innovation and stable integrates the extended Unified Theory of Acceptance and Use of
societal development. Technology 2 (UTAUT2) with the Social Amplification of Risk
Risk perception theory suggests that when confronted with Framework (SARF) to more comprehensively explain and
uncertain threats posed by emerging and complex technologies, the capturethe dynamic interplay between public Risk Perception and
public often exhibits irrational cognitive biases such as "probability trust-building processes. This approach aims to provide a solid
neglect" and "loss sensitivity" (Zhu, 2022). In the context of AIGC theoretical foundation for constructing a risk management index
applications, such irrational tendencies in Risk Perception are system tailored to AIGC technologies.
particularly prominent. Given the algorithmic complexity and high Current academic research on technological Risk Perception and
degree of uncertainty associated with AIGC technologies, their trust management has made significant progress. For instance,

Yuging (2024) confirmed that trust plays a significant mediating
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and moderating role between Risk Perception and behavioral
intention (Yugqing, 2024). Kaur and Arora (2020) further revealed
that Risk Perception can exert an indirect yet significant influence
on technology adoption intention through trust mechanisms (Kaur
& Arora, 2020). Gu (2022) emphasized the dynamic, nonlinear
coupling relationship between the transparency of risk
communication and institutional trust, noting that information
opacity may trigger a sharp decline in public trust (Gu et al., 2022).
However, existing research still suffers from three main limitations:
First, most studies have not sufficiently considered the potential
nonlinear moderating effect of Risk Prevention Sensitivity, thereby
failing to fully uncover the complex interactive mechanisms
between Risk Perception and trust. Second, from a methodological
perspective, traditional Structural Equation Modeling (SEM) is still
widely used, despite its evident limitations in handling parameter
uncertainty and small sample sizes. Third, regional studies often
remain confined to single-dimensional analyses, lacking systematic,
comprehensive, and regionally differentiated investigations into the
transmission pathways of AIGC-related risks.

As a major hub for technological innovation in China, Jiangsu
Province has in recent years actively pursued development
strategies in artificial intelligence and the digital economy. It has
accumulated rich practical experience in the AIGC field, while also
revealing typical application risks and governance challenges.
Therefore, taking Jiangsu Province as a representative region for
studying AIGC risk assessment and governance pathways not only
provides a scientific basis for decision-making by local
governments and technology enterprises, but also offers valuable
paradigmatic insights for risk governance in other regions.
Specifically, conducting in-depth quantitative and path analyses of
key dimensions—such as public Risk Perception, System Trust,
Risk Trust, and Risk Prevention Sensitivity—can help optimize
strategies for the social adoption of AIGC technologies, improve
risk control systems and governance mechanisms, and provide
robust theoretical and practical support for relevant policy
formulation.

To effectively address the limitations of existing research, this
study aims to achieve breakthroughs in three key areas at both the
theoretical and methodological levels. First, at the theoretical level,
drawing on the multi-level trust moderation mechanism proposed
by Yuqing (2024), System Trust is introduced as a critical
buffering wvariable to more deeply uncover the nonlinear
transmission mechanisms among Risk Perception, Risk Trust, and
public Behavioral Intention. Second, at the methodological level,
the study integrates the analytical strengths of risk—trust balancing
theory and Bayesian Structural Equation Modeling (BSEM),
thereby overcoming the technical constraints of traditional SEM in
dealing with parameter estimation uncertainty and small sample
sizes. Third, at the regional governance level, the study
innovatively incorporates the risk communication governance
framework proposed by Gu et al. (2022), along with the
institutional factors of Jiangsu Province's digital economy
governance, in order to enhance the policy applicability and
practical relevance of the research findings.

In summary, this study takes Jiangsu Province's representative
experience as the empirical sample and adopts Bayesian Structural
Equation Modeling as the core methodological approach to deeply
analyze the complex interactive relationships and dynamic
evolutionary mechanisms of Risk Perception, trust management,
and risk governance in AIGC technology applications. This
research not only responds to the academic demand for deeper
exploration into technological risk management but also provides
practical decision-making support for policy formulation in
technology governance—forming the core logic and fundamental
framework of this paper.

Literature Review
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2.1 AIGC Technology Risks and Public
Perception

Existing research indicates that the formation of AIGC-related
risks exhibits distinct characteristics of technological generational
shifts and cross-modal features. Unlike traditional AT technologies,
which primarily involve algorithmic bias, AIGC risks are
manifested in multiple dimensions such as the lack of content
credibility and the ethical risks associated with content
dissemination. Lin et al. (2024) conducted an empirical study
revealing that semantic distortion is prevalent in AIGC-generated
content, and that the dissemination speed of misinformation is 3.8
times higher than that of traditional user-generated content (UGC).
This significantly heightens public concern regarding content
credibility (Lin et al., 2024). Di (2024), in the context of new media,
further pointed out that although improved GAN models have
raised the accuracy of video tampering detection to 91%, the
authenticity issues of deepfake-generated content still severely
undermine public trust (Di, 2024). Additionally, Zhu (2022),
through a study in the marketing field, demonstrated a nonlinear
dissemination effect of ethical risks in AIGC content—where a
single misleading promotional message may trigger an amplified
“ripple effect,” thereby intensifying public Risk Perception (Zhu,
2022).

In terms of public Risk Perception, the application of AIGC
technologies has exacerbated cognitive dilemmas. Neyazi (2023)
found in an experimental study that more than 50% of users were
unable to accurately identify the source of AIGC-generated content,
and that there is an inverted U-shaped relationship between public
cognitive bias and AIGC usage frequency (Neyazi et al., 2023).
Similarly, Chen et al. (2023) noted in the medical field that when
diagnostic advice generated by AIGC lacks sufficient
interpretability, patients’ Risk Perception increases dramatically.
This finding confirms that the imbalance between technological
complexity and users’ cognitive capacity is a key factor in
amplifying risk (Chen et al., 2023).

Taken together, these studies suggest that a salient characteristic
of AIGC-related risks lies in the “overload effect” of public Risk
Perception, wherein the complexity and uncertainty of the
technology significantly amplify perceived risk. Therefore, this
study identifies Risk Perception as one of the core latent variables,
operationalized through three observed dimensions: perceived
severity of consequences, likelihood of occurrence, and perceived
uncontrollability. Accordingly, we propose Hypothesis HI: Risk
Perception positively influences Risk Trust (derived from Qin et al.,
2021, regarding the role of risk awareness in driving institutional
trust).

2.2 AIGC Trust Crisis and Construction
Pathways

The public trust crisis surrounding AIGC technologies stems
from a dual dilemma inherent in the technology itself: First, the
probabilistic and uncertain nature of AIGC-generated content
makes it difficult for the public to establish stable psychological
expectations; second, the ambiguity of the content generators leads
to unclear accountability. Stein (2022), from a legal perspective,
noted that liability determination costs in AIGC-related
infringement cases are 43% higher than those in traditional AT
systems, significantly weakening the institutional foundation of
public trust (Stein, 2022). In response, Lin et al. (2024) proposed a
content traceability method integrating blockchain and smart
contracts, which significantly improves content credibility and
represents an effective “technical anchoring™ pathway (Lin et al.,
2024). Zhang et al. (2024), in the context of autonomous driving,
demonstrated that a cloud—edge—terminal distributed architecture
can effectively reduce decision-making uncertainty and facilitate
cross-scenario trust mechanisms (Zhang et al., 2024).
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Regarding the mediating mechanisms of trust, two mainstream
perspectives have emerged in academic discourse: technological
transparency and institutional assurance. Howard et al. (2024)
emphasized the importance of transparency in user interface design,
confirming that transparency significantly enhances public trust
levels (Howard & Schulte, 2024). Aleshkovski (2022) argued that a
robust institutional compliance framework can significantly
increase public tolerance of technological risks (Aleshkovski,
2022).

It is thus evident that the construction of AIGC trust mechanisms
hinges on the co-evolution of “technological transparency” and
“institutional assurance.” That is, enhancing technological maturity
can improve the controllability of generated content, while
strengthening the institutional framework can improve the public’s
societal coping capacity. Accordingly, this study defines System
Trust as a multidimensional latent variable encompassing
technological transparency, technological maturity, and social
coping capacity. We therefore propose Hypothesis H2: System
Trust positively influences Risk Trust (in line with the technology
attribute—trust transmission mechanism proposed by Kaur & Arora,
2020).

2.3 Evolution and Limitations of AIGC Risk
Governance Models

Current research on AIGC technology risk governance models is
undergoing a transformation across three dimensions: methodology,
technical pathways, and governance perspectives. At the
methodological level, there is a shift from traditional discrete risk
assessment toward embedded governance during the content
generation process. For example, Best et al. (2024) proposed a real-
time monitoring model featuring government—enterprise
collaboration, which effectively reduces the risk of content
violations (Best et al., 2024). In terms of technical pathways,
governance strategies have evolved from single-algorithm
optimization to the coordinated governance of heterogeneous
systems. Chen et al. (2023), for instance, used digital twin
technology to maintain AT error rates at extremely low levels (Chen
et al., 2023). From the governance perspective, research has
gradually expanded from a focus on single-content regulation to the
holistic governance of the ATIGC ecosystem. Zhou et al. (2024)
introduced a resource allocation algorithm to enable rapid risk
response (Zhou et al., 2023).

However, these studies still exhibit several notable limitations.
First, traditional analytical approaches struggle to capture relational
risks across multimodal data. Second, static risk assessment
frameworks fail to reflect the dynamic evolution of technological
risks. Third, linear regression methods often overlook the nonlinear
characteristics and moderating effects of the public’s Risk
Prevention Sensitivity (Neyazi et al., 2023; Schaeffer et al., 2024).
To address these challenges, this study introduces Bayesian
Structural Equation Modeling (BSEM) to tackle issues related to
parameter uncertainty and small-sample estimation. Simultaneously,
it incorporates Risk Prevention Sensitivity as a latent variable,
operationalized through three observed dimensions: risk assessment
capability, self-protection ability, and alertness to new technologies.
Accordingly, we propose the following hypotheses: H3: Risk Trust
positively influences Behavioral Intention (extending the trust—
behavior linear model proposed by Liu et al., 2023); H4: Risk
Prevention Sensitivity negatively moderates Behavioral Intention
(in line with the empirical conclusions on risk avoidance tendencies
from Gu et al., 2022).

In conclusion, while existing academic research has
systematically revealed the cross-modal nature of AIGC-related
risks, as well as the internal mechanisms of public Risk Perception,
trust crises, and governance pathways, limifations remain in
understanding the nonlinear inferactive effects between Risk
Perception and trust, the moderating role of Risk Prevention
Sensitivity, and regionally differentiated governance strategies.
This study integrates prior findings by incorporating key latent
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variables—Risk Perception, System Trust, Risk Trust, Risk
Prevention Sensitivity, and Behavioral Intention—and employs
Bayesian Structural Equation Modeling (BSEM) to explore the
internal logic and governance pathways of AIGC risk transmission.
In doing so, it aims to offer new research perspectives for both
theoretical innovation and policy practice.

Methodology
3.1 Sampling Design and Data Collection

Data collection was conducted using a three-stage unequal
probability sampling method. Compared to traditional equal
probability sampling, unequal probability sampling better accounts
for urban—rural differences, levels of economic development, and
population structure characteristics, thereby enhancing the
representativeness and heterogeneity of the sample. This approach
ensures that the survey results more accurately reflect the
socioeconomic diversity within Jiangsu Province. The survey was
carried out simultaneously from July to August 2024 across
northern, central, and southern regions of Jiangsu Province,
targeting 12 selected neighborhoods in 6 prefecture-level cities.
Respondents were local permanent residents.

The sample size was determined based on the finite population
correction principle and calculated scientifically under a 95%
confidence level (Z = 1.96). Taking into account the number of
surveyed neighborhoods (12) and the population proportions of
each city, the final effective sample size was set at 575 respondents.
This sampling design not only meets the representativeness and
data accuracy requirements of Bayesian Structural Equation
Modeling (BSEM) but also provides a robust data foundation for
addressing parameter uncertainty and conducting small-sample
analysis in subsequent model estimation.

3.2 Construction of the Indicator System

Although the traditional Technology Acceptance Model (TAM)
has been widely applied in early research on technology adoption,
it has gradually revealed significant limitations in describing and
explaining the interaction among risk perception, trust mechanisms,
and behavioral intention in complex systems. To address this
shortcoming, this study introduces the extended Unified Theory of
Acceptance and Use of Technology (UTAUT2) and the Social
Amplification of Risk Framework (SARF), and integrates the risk
stratification theory, frust transmission model, and the risk-
behavior interaction framework to construct a theoretical analytical
path more suitable for the risk communication context of AIGC
technologies (Stein, 2022; Seth, 2024; Wei et al., 2023).

UTAUT?2 approaches technology adoption from the perspective
of individual users, emphasizing how factors such as performance
expectancy, social influence, and facilitating conditions affect
usage intention and behavioral tendencies, with particular attention
to the moderating role of situational and social contextual variables.
In contrast, SARF adopts a macro-level societal perspective,
revealing how risk information is amplified or attenuated through
interactions among media, organizations, and the public, thereby
influencing individual risk perception and group trust structures.
The synergy between the two lies in UTAUT?2 offering a micro-
level cognitive—behavioral logic, while SARF elucidates the
mechanisms through which risk information and trust are
transmitted within broader societal contexts. Through this
theoretical complementarity, the study captures both the cognitive
response mechanisms of individual users facing ATGC technologies
and how societal risk information is constructed and disseminated
via media and trust networks to influence behavioral intention.
Based on this integrative perspective, a risk management index
system comprising five core latent variables and fifteen observed
indicators is established (see Table 1), enabling a more systematic
exploration of the dynamic relationships among public perception,
trust, and behavioral intention.
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Table 1. Measurement Framework for Risk Perception and Trust-
Building in AIGC Applications

. Indicat .
Latent Variable il Observed Indicator
Code
Al Severity of risk consequences
: , A2 Likelihood of risk occurrence
Risk Perception (4) A3 Perceived uncontrollability of
risks
Bl Technological transparency
System Trust (B) B2 Technological maturity
B3 Social coping capacity
Cl Trust in government regulation
; C2 Trust in technology enterprises
Rk Trust(C) C3 Trust in public participation
mechanisms
Dl Willingness to try the technology
- G
Behavioral D2 Willingness ;foiligﬂg;t technology
Tention (D) D3 Willingness to engage in risk
prevention
Risk Prevention b Risk assessmepi cap ?t.nhty
Sensitivity (E) E2 Self-protection ability
E3 Alertness to new technologies

Specifically, Risk Perception (A) draws on the Social
Amplification of Risk Framework (SARF), which emphasizes how
risks are amplified through societal processes. It begins with the
public’s subjective evaluation of technological threats and
incorporates three dimensions—severity of consequences,
likelihood of occurrence, and perceived uncontrollability—to
comprehensively capture the amplification effects and subjective
characteristics of risks in public cognition.

System Trust (B), informed by the UTAUT?2 framework’s focus
on contextual factors and social expectancy effects, integrates three
indicators—technological transparency, technological maturity, and
social coping capacity—to reflect the public’s overall trust in the
AIGC application environment.

From the perspective of social governance, Risk Trust (C) is
assessed through three dimensions: trust in government regulation,
trust in technology enterprises, and trust in public participation
mechanisms. These indicators evaluate the credibility of risk
governance actors within social interaction and communication
processes, embodying SARF’s emphasis on the moderating role of
institutional factors in shaping Risk Perception.

Behavioral Intention (D) is grounded in UTAUT2’s assertion of
the relationship between individual technology adoption and social
influence. It is further specified into three dimensions: willingness
to adopt the technology, willingness to support its promotion, and
willingness to participate in collaborative risk governance—thus
reflecting the public’s practical inclination to engage in risk
governance activities.

Finally, Risk Prevention Sensitivity (E) is conceptualized based
on SARF’s recognition of individual differences in risk response
behavior. It captures the public’s sensitivity to risk and its
moderating effect on Behavioral Intention through three
components: risk assessment capability, self-protection ability, and
alertness to new technologies.

3.3 Construction of the Bayesian Structural
Equation Model

Given the limitations of traditional Structural Equation Modeling
(SEM) regarding assumptions of data distribution and sample size
requirements, this study adopts Bayesian Structural Equation
Modeling (BSEM) as a methodological alternative. Classical SEM
typically relies on maximum likelihood estimation (MLE), which
assumes that the data follow a multivariate normal distribution and
requires a relatively large sample size to ensure stable parameter
estimation. However, in practical survey research, these
assumptions are often difficult to meet—especially when the
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sample size is limited or the data deviate from normality—Ileading
to biased parameter estimates and underestimated standard errors
(Song & Lee, 2012). In addition, traditional SEM does not
effectively incorporate researchers’ prior knowledge or theoretical
expectations into the model, which constrains its flexibility and
explanatory power.

In contrast, BSEM treats parameters as random variables and
incorporates prior distributions, enabling more robust estimation by
integrating both observed data and theoretical information, while
imposing less stringent assumptions on data distribution (Zhou et
al., 2023). This approach not only enhances the model’s
adaptability in small-sample contexts but also quantifies estimation
uncertainty through posterior distributions, thereby reducing the
risk of overfitting. As such, BSEM is befter aligned with the
practical needs of this study, which involves path analysis under
conditions of non-normality and limited sample size (Chen et al.,
2024).

Specifically, the BSEM method employed in this study involves
two core steps: First, the standardized path coefficients from
classical SEM are converted into weakly informative prior
distributions, thereby reasonably constraining the parameter
estimation range. Second, Markov Chain Monte Carlo (MCMC)
sampling is used to obtain the posterior distributions of parameters.
The fit between the theoretical model and the empirical data is
assessed through posterior predictive checks, forming an iterative
optimization framework that combines prior specification,
parameter estimation, and model validation, thus improving the
accuracy and robustness of hypothesis testing.

3.3.1 Measurement Model
Construction

and Structural Model

The measurement and structural models provide the foundation
for SEM by defining the relationships among latent variables. In
this study, five latent variables are each associated with three
observed variables. Let the vector of observed variables be defined
as v =[yny2 ,..¥is]", and the vector of latent variables be
denoted as « , which includes exogenous latent variables ¢ =
[€4,&8,¢E]" and endogenous latent variables n = [n¢,np]” . The
measurement model is expressed as:

y=Aw+e, (1)
where A is a 15 X 5 factor loading matrix and € is a 15%1
measurement error vector, assumed to follow a normal distribution
with mean 0 and variance ¥, .

The structural model describes the causal relationships among
latent variables. The relationships between the endogenous and
exogenous latent variables are expressed as:

n=In+Iréi+6, (2)
where [T and I" are parameter matrices to be estimated, and 6 is a
normally distributed error vector with mean 0 and variance Ws. The
error terms € and § are assumed to be independent. The exogenous
latent variables ¢ follow a normal distribution with mean 0 and
variance ¢ (Jie-Ling & Yuan-Chang, 2021). The specific structural
relationships among the latent wvariables in this study are
represented as:
{U6=Y1§A+Y2§B+51 (3)
np = Bnc +ysép + 82’
where &4, &g, and &g follow normal distributions N[0, ¢], and the
error terms & follow N[0, ¥,] accordingly.

3.3.2 Bayesian Inference Foundations and Specification

BSEM estimates SEM models using the Bayesian approach. Let
the observed data be denoted as ¥ = (yi,.. ) . Where each
observation vector y; € R1® corresponds to a latent variable vector
w; € R®. The model parameters are represented as 6 = (A, @, ¥,),
which include:

(1) The factor loading matrix A (from the measurement model);

(2) The covariance matrix of exogenous latent variables ¥ (from
the structural model);
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(3) The measurement error covariance matrix ¥, ., typically
assumed to be diagonal.
The joint posterior distribution is derived from Bayes’ Theorem
and decomposed as follows:
p(6,021Y) o< p(Y142,8)- p(1216) - p(8) ,
Likelihood

(4)

Prior

Where (2 = (w1, ..., Wy) is the matrix of latent variables, and
6 is the vector of structural parameters. In BSEM, the latent
variable matrix is treated as missing data via data augmentation,
and is estimated jointly with the model parameters. This approach
increases the flexibility of the model and enhances estimation
efficiency (Bollen, 1989).

3.3.3 Theory-Driven Hierarchical Prior Structure

The model construction follows the principles of Bayesian
hierarchical modeling (Cohen, 1992), using nwlti-level prior
constraints to ensure both model identifiability and parameter
stability. Traditional SEM standardized path coefficients are
employed to guide the specification of Bayesian priors, enabling an
organic integration of prior knowledge with observed data. This
approach offers several advantages: it accelerates convergence,
reduces uncertainty in the parameter space, constrains parameter
ranges to prevent overfitting, incorporates findings from existing
studies to improve model reliability, and limits the occurrence of
extreme or implausible values, thus enhancing model stability and
validity under small-sample conditions.

1.Latent Variable Centering Priors:

Exogenous latent variables & € {&4,&p, &g} are assigned a
normal prior &~N (0, 0.52). Endogenous latent variables 71 €
{ncnp) are similarly assumed to follow n~N (0, 0.52). These
priors reflect the standardization assumption for latent variables
(Stein, 2022), and the variance parameter is determined through
preliminary  simulation  experiments to  balance  prior
informativeness with estimation flexibility.

2 Regularized Priors for Factor Loadings:

In the measurement model y; =4:<4; +¢; .
variable is measured by three observed variables. The prior
distribution for each factor loading 4; is defined as:

A ~N ([1,1,1], 0.1213) , J=12345 (5)
where I3 is the 3%3 identity matrix. Setting the mean of the factor
loadings to 1 reflects a “unit variance identification™ strategy, while
allowing a standard deviation of +0.2 accommodates imperfections
in the measurement instruments.

3 Random Effects in the Structural Equations:

A Gaussian process is introduced to model uncertainty in the
structural layer of latent variable relationships:

e~ N@=y1{a+y28p0=02), (6)
np ~ N(u = Bnc+ysép,0 =0.2). (7

The additive structure implies path coefficients y,. =
¥g—c = 1, and the standard deviation parameter o characterizes the
uncertainty in the structural equations. The choice of 0 = 0.2 is
informed by typical effect sizes in psychological research (Zhou et

each latent

al., 2023).
4 Hierarchical Error Structure for Enhanced Measurement
Precision: A layered error specification is adopted: the

measurement error follows €peasure ~ N(0,0.52) , representing
standardized residuals of observed variables; the structural equation
error follows €gpct ~ N(O, 0.22), capturing unexplained variance
among latent variables.

3.3.4 Posterior
Framework

Inference and Model Diagnostics

In the BSEM framework, the joint posterior distribution of
model parameters and latent variables, p(8, {1 |Y), generally has no
closed-form solution. Markov Chain Monte Carlo (MCMC) is a
numerical method designed to draw samples from complex high-
dimensional distributions by constructing a Markov chain whose
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stationary distribution equals the target posterior. The core idea is
to construct a Markov chain by designing a transition kernel
K@®D10®) | such that the chain’s stationary distribution ()
equals the posterior distribution p(81Y).

This study adopts a Bayesian inference framework, using the
No-U-Turn Sampler (NUTS) algorithm to implement MCMC
sampling. The model initiates four independent Markov chains,
each running for 4,000 iterations (including the first 1,000 as an
adaptive tuning phase), yielding a total of 12,000 posterior samples.
Sampling efficiency is ensured through a dual mechanism:

1.During the tuning phase, the step size is dynamically optimized
to maintain an average acceptance rate within the recommended
range of 65%—80%;

2.The number of iterations is extended to reduce autocorrelation
between samples and ensure that the effective sample size (ESS) of
key parameters exceeds 400, thus satisfying the Monte Carlo
standard error (MCSE) precision threshold of less than 5% of the
standard deviation.

Model convergence is verified through a three-stage diagnostic
procedure:

1.Joint Distribution Testing of Variable Relationships: This test
is based on the logic of Bayesian posterior distributions. Through
kernel density estimation and scatterplot matrix analysis, the
statistical associations and co-variation trends between latent and
observed wvariables are evaluated. Under multivariate model
structures, this method helps identify potential nonlinear
relationships and multicollinearity issues, validating the construct
validity of the measurement model. By examining the shape and
structure of joint distributions, the rationality of model
specification can be assessed, providing theoretical support for
subsequent path coefficient estimation.

2 Bayesian Model Diagnostics: To ensure the effectiveness of
the MCMC sampling process and the reliability of model
convergence, diagnostics such as trace plots, autocorrelation
coefficients, and the Gelman-Rubin convergence statistic are
employed. These tools help determine whether the sampling chains
have reached a stationary state and whether parameter estimates are
sufficiently precise. This prevents estimation bias due to non-
convergent chains or inefficient sampling and enhances the
credibility of the model’s inferential results.

3. Posterior Distribution and Highest Density Interval (HDI)
Testing: Posterior uncertainty is quantified using the shape of the
posterior distribution and Highest Density Interval (HDI) analysis.
Unlike traditional point estimates, HDIs provide probabilistic
interval estimates that more comprehensively reflect the central
tendency and variability of parameters. This approach addresses the
limitations of frequentist point estimates and improves the
interpretability of results under uncertainty.

Together, these three diagnostics ensure the scientific rigor and
explanatory power of the model estimation process.

Results
4.1 Data Cleaning and Preliminary Testing

A total of 759 questionnaires were collected during the formal
survey. After screening for logical consistency and removing
responses with completion times below 60 seconds or above 300
seconds, a final valid sample of 696 responses was obtained,
yielding an effective response rate of 91.70%. The sample showed
a slightly higher proportion of female participants and was
predominantly composed of younger respondents (see Table 2).
After excluding demographic variables such as age, education, and
gender, reliability and walidity tests were conducted on the
remaining 19 scale items. The Cronbach’s alpha coefficient was
calculated to be 0.912, and the Kaiser-Meyer-Olkin (KMO) value
was 0.946, indicating high reliability and suitability for factor
analysis.
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Table 2. Demographic Characteristics of the Sample To enhance the stability and convergence of path coefficient
— Category Sample Proportion estimation in the Bayesian Structural Equation Model (BSEM), the

standardized path coefficients derived from the traditional

8126 Structural Equation Model (SEM) were used as informative priors
Gender Male ALE 45.7% for the Bayesian framework Initially, a conventional SEM was
Female 378 54.3% used to estimate path coefficients and evaluate model fit. As shown
Age Under 18 43 6.2% in Table 5, the model’s chi-square to degrees-of-freedom ratio is
15-30 407 S8i5% 2.932, meeting the recommended threshold of <3. Other goodness-
31-40 154 22.1% of-fit indices (INFI, IFI, CFI, GFI) all exceed the critical value of

4130 63 9.1% 0.9, indicating a good model fit.
Qver _50 29 4.2% As presented in Table 6, the estimated standardized path
Education Junior high or 23 3.6% coefficient from risk perception to risk trust is 0.429 (p < 0.001),
be}_low and from system trust to risk trust is 0.598 (p < 0.001). The

High 92 13.2%

influence of risk trust on behavioral intention is 0.966 (p < 0.001),
. ' while risk prevention sensitivity shows a significant negative effect
Associate degree 74 10.6% on behavioral intention, with a coefficient of -0.386 (p < 0.001).

school/vocational

Bachelor’s 471 67.7% All path coefficients are statistically significant and align with
- dfgr‘eeand 4 K theoretical expectations.
sl o Table 5. Model Fit Indices
above -
A two-stage Confirmatory Factor Analysis (CFA) was conducted Fit Acceptable Range Observed L. oo 1 tion
to assess the reliability and validity of the measurement model. Index  Acceptable  Good Value

First, results from the convergent validity analysis (see Table 3) X/df 2-3 <2 2.932 Acceptable

showed that all standardized factor loadings for observed variables NFI 0.7-0.9 >0.9 0.961 Good

ranged from 0.775 to 0.865 (CR > 2.58, p < 0.001), meeting ;

standard thresholds of significance. The Composite Reliability (CR) IEL 0.7-0:2 209 0,933 Gl

of each latent construct ranged from 0.831 to 0.871, and the CFI 0.7-0.9 20.9 0.973 Good

Average Variance Extracted (AVE) ranged from 0.606 to 0.692 GFI 0.7-0.9 >0.9 0.950 Good

(see Table 4), all exceeding the benchmarks recommended by the

Formnell-Larcker criterion, indicating excellent internal consistency Table 6. Path Coefficients and Significance Testing

and discriminant validity of the measurement scales.

Table 3. Convergent Validity Results Predictor Outcome Std. . SE z(CR) B
Coefficie value
Latent . std. I
Copstruet  odicator o z(CR)  p-value Risk Risk Trust 0429 0.043 8751  ***
- Perception
Risk Al 0.833 = i System Trust ~ Risk Trust ~ 0.598 0054  11.178  ***
Perception A2 0.806 24.460 0.000 Rk T Behavioral 0.966 0.149 6.617 A
(A) A3 0.848 26.233 0.000 SEHUSE T Intention
Syst Bl 0.781 - - Risk Behavioral -0.386 0.137 -2.731 o
Trﬁ:teg) B2 0.780 20.959 0.000  Prevention Intention
B3 0.775 20.813 0.000 Sensitivity

Risk Trust o 0,767 p - : :

©) c2 0.785 21.936 0.000 4.3 Bayesian Structural Equation Model
_ c3 0511 22.807 0.000 (BSEM): Posterior Distribution Diagnostics
Behavioral D1 0.807 - -

Intention D2 0.811 20.825 0.000 This study employed the PyMC library to construct a Bayesian
(D) D3 0.764 19.906 0.000 Structural Equation Model (BSEM) and estimate posterior
Risk distributions using the Markov Chain Monte Carlo (MCMC)

: El 0.836 . . : ey
Prevention : algorithm. The model was built in three key stages:
Sensitivity E2 0.794 24.519 0.000 1.Model specification: Based on the theoretical framework,
(E) E3 0.865 27.860 0.000 structu.ral path§ between latept and observed va.riables were defined.
2 Prior setting: Standardized path coefficients obtained from
Table 4. Confirmatory Factor Analysis Results traditional SEM were incorporated as weakly informative priors to
accelerate convergence.
. . Reliability 3. Posterior estimation: MCMC sampling was conducted to
Dimenzion ANE CR Evaluation estimate the posterior distributions of model parameters.
; ; : After model construction, a three-stage diagnostic framework
Risk P t 0.688 0.869 Very H ’ S S
R aeean ey Ehgh was employed to assess robustness, reliability, and wvalidity of
System Trust 0.606 0.822 Very High parameter estimates.
. . 4.3.1 Joint Distribution Diagnostics of Variable
Risk Trust 0.621 0.831 Very High Relationships
Behavioral Intention 0.631 0.837 Very High The first diagnostic step involved assessing the joint distribution
Risk Prevention . between latent variables and observed indicators using kernel
2 : ;
Sensitivity i i VayHhgh density estimation and scatterplot matrix analysis (see Figure 1).

The results indicate that the marginal distributions (diagonal) and
4.2 Traditional SEM Path Coefficient Estimation joint distributions (off-diagonal) of all latent constructs and factor
loading parameters form elliptical or approximately circular high-
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density regions. No evidence of multimodality, severe skewness,
extreme collinearity, or outliers was detected. These findings
suggest that the posterior distributions are well-behaved, with
strong convergence and stability.

In sum, the posterior and joint distributions demonstrate no
abnormalities, indicating that the model produces robust estimates
of latent variables and their loadings.
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Figure 1. Joint Distribution Plot of Variable Relationships
4.3.2 Bayesian Model Diagnosfics

The second stage focused on assessing the stability of parameter
estimation through MCMC convergence diagnostics. Specifically,
the Gelman-Rubin diagnostic criterion (i.e., Potential Scale
Reduction Factor, PSRF) was employed to evaluate the mixing
behavior and within-chain autocorrelation across four independent
MCMC sampling chains.

The diagnostic plots comprise the marginal posterior
distributions (left panel) and MCMC sampling traces (right panel)
for each parameter. The marginal distribution plots display smooth,
symmetric posterior curves without visible anomalies. In the trace
plots, most sampling chains stabilize after a short burn-in period,
with high overlap and interweaving among chains—indicating
minimal differences between chains. All PSRF values were below
the conventional threshold of 1.05, confirming that the model had
reached a satisfactory level of convergence.

Although minor fluctuations appeared in the trace plots of a few
path loadings, the amplitude of these variations remained within
acceptable bounds and did not compromise overall convergence.
These results validate the reliability and robustness of parameter
estimation, ensuring the effectiveness of the subsequent Bayesian
structural model analysis.

e e re———
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Figure 2. Bayesian Model Diagnostic Plot
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4.3.3 Posterior Distribution and Highest Density Interval
(HDI) Analysis

The third stage involved a detailed examination of the posterior
distributions and the Highest Density Intervals (HDIs) of the model
parameters, aimed at evaluating estimation accuracy and parameter
uncertainty.

The posterior plots revealed that all model parameters exhibited
unimodal and symmetric posterior distributions with well-defined
peaks and density concentrated around the parameter means. This
pattern indicates that the parameter estimates derived from
Bayesian inference are highly credible and stable.

Moreover, analysis of the 94% HDI intervals—which represent
the range containing the most credible 94% of the posterior
probability mass—demonstrated that all HDIs were narrow and did
not include =zero, further supporting the low uncertainty in
parameter estimates and the model’s strong explanatory power for
the observed data.

Taken together, the diagnostic results from this stage provide
compelling evidence that the BSEM constructed in this study offers
precise and robust parameter estimates, lending strong theoretical
reliability and practical value to the conclusions drawn from the
model.
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Figure 3. Posterior Distribution and Highest Density Interval
Pilot

4.4 Bayesian Structural Equation Path Analysis

The results confirm that the BSEM demonstrates good model fit
and stability, and that its parameter estimates are reliable, providing
a robust statistical foundation for inferring and interpreting path
coefficients. On this basis, the path coefficients derived through
Bayesian inference further uncover the causal relationships and
influence pathways among latent variables, offering in-depth
empirical insights into the model’s theoretical significance and
practical implications.
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Figure 4. Path Diagram of Standardized Parameter
Estimates in Bayesian SEM
The path analysis results based on the BSEM (see Figure 4)
reveal the underlying causal relationships and mechanisms of
influence among key constructs. First, the path coefficient from
Risk Perception (A) to Risk Trust (C) is 0.429, indicating a
significant positive effect and supporting Hypothesis H1. This
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suggests that as individuals' risk perception increases, their level of
risk trust also tends to rise. Second, the path coefficient from
System Trust (B) to Risk Trust (C) is 0.614, thereby supporting
Hypothesis H2. This indicates that system trust is a stronger
determinant of risk trust—higher system trust levels can
substantially enhance individuals® willingness to trust in risky
situations. In addition, the path coefficient from Risk Trust (C) to
Behavioral Intention (D) is 0.383, validating Hypothesis H3, which
implies that higher levels of risk trust are associated with more
proactive behavioral intentions. Notably, the path coefficient from
Risk Prevention Sensitivity (E) to Behavioral Intention (D) is -
0.154, indicating a negative relationship. This suggests that
heightened sensitivity to risk prevention may suppress behavioral
intention, possibly due to excessive risk vigilance, thus confirming
Hypothesis H4.

These path coefficients provide empirical support for the
proposed research hypotheses, reflecting the core relational
structure of the model and the interaction mechanisms among
variables. The findings offer valuable theoretical guidance for
optimizing risk management strategies and building effective trust
mechanisms.

Conclusion

5.1 Core Pathway Analysis

1. Risk Perception (4) — Risk Trust (C) (f = 0.429)

The results of the Bayesian Structural Equation Modeling
(BSEM) indicate that risk perception exerts a significant positive
effect on the public's risk trust. At first glance, this finding appears
to contradict conventional assumptions, but it can be reasonably
interpreted from the perspectives of technological black-box
characteristics and risk communication.

In the context of Artificial Intelligence Generated Content
(AIGC) technologies, the opaque and algorithmically complex
nature of such systems makes it difficult for the public to directly
assess risk levels. As a result, individuals are compelled to
construct trust through systematic cognitive processing. According
to dual-process theory, people typically rely on both rational
cognition and emotional intuition when processing risk-related
information (Selvarajan et al., 2024). A high level of risk
perception regarding AIGC technology often indicates that
individuals have cognitively evaluated the potential risks and
corresponding mitigation mechanisms, thereby forming a kind of
"calibrated" rational trust.

This finding aligns with risk society theory, which emphasizes
the paradoxical relationship between the public and expert systems
in modern society: due to limitations in lay knowledge, individuals
often seek institutional support and informational transparency—

paradoxically reinforcing their trust in risk governance mechanisms.

Moreover, the Social Amplification of Risk Framework (SARF)
suggests that when risk information is sufficiently transparent, even
heightened risk perception may coexist with strong risk trust, as
individuals perceive existing governance measures to be effective
(Lietal., 2024).

Existing research in the AIGC domain also supports this view,
showing that functional risk perception tends to positively
influence technology trust, whereas emotional risk perception often
diminishes it. This indicates that a clear and comprehensive
understanding of technological risks can facilitate the formation of
rational trust among the public (Niculae, 2023). Therefore,
enhancing the transparency and explanatory power of risk
communication is crucial for promoting rational public engagement
with risk and achieving effective AIGC governance.

2. System Trust (B) — Risk Trust (C) (f = 0.614)

The findings further show that system trust has a particularly
significant impact on risk trust, with a path coefficient of 0.614.
This suggests that public trust in the broader technological
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environment—including  technology  providers, regulatory
institutions, and institutional frameworks—serves as a key
antecedent of risk trust.

This conclusion echoes the UTAUT2 model’s emphasis on
contextual and environmental factors in technology acceptance:
when evaluating technological risks, individuals often rely on their
trust in external institutions as a cognitive shortcut. This heuristic
processing is consistent with risk communication theory, which
posits that public trust in authoritative entities such as governments
and scientific organizations helps mitigate uncertainty associated
with emerging technologies (Peng et al., 2024).

Moreover, the finding aligns with the ‘““abstract system trust”
perspective in risk society theory, which contends that modern
societies heavily depend on institutionalized expertise and systemic
trust to alleviate anxiety arising from technological complexity. In
the case of AIGC, the high degree of algorithmic complexity often
renders the technology incomprehensible to lay users, who end up
placing blind trust in its outputs. Consequently, institutional trust
guarantees become critically important for shaping public
perceptions and behaviors (Sands et al., 2022).

In sum, enhancing institutional credibility and promoting multi-
stakeholder collaborative governance are essential strategies for
effectively increasing public risk trust in the context of AIGC
technologies.

3. Risk Trust (C) — Behavioral Intention (D) (f = 0.383)

The positive effect of risk trust on behavioral intention indicates
that when the public has sufficient trust in the risk management
capabilities of AIGC technologies, they are more likely to exhibit a
favorable intention to adopt such technologies. This finding is
highly consistent with both UTAUT?2 and the extended Technology
Acceptance Model (TAM), which emphasize trust as a critical
mediating factor in technology adoption decisions.

Although AIGC technologies may offer substantial performance
benefits and convenience, a lack of trust can significantly reduce
users’ willingness to adopt them (Wong & Jensen, 2020).
Empirical studies in the field of artificial intelligence have reached
similar conclusions, showing that trust effectively reduces risk
perception and enhances positive evaluations of the technology,
thereby promoting its adoption (Aleshkovski, 2022).

In the present context, when individuals believe that AIGC
systems can effectively mitigate their inherent risks, they are more
inclined to focus on the tangible benefits these technologies can
bring, which in turn enhances their intention to use. Therefore,
strengthening public trust in AIGC risk governance emerges as a
key pathway to facilitating technology adoption, and this study
provides empirical support for such a mechanism.

4. Risk Prevention Sensitivity (E) — Behavioral Infention
(D) (f=—0.154)

The study also finds that risk prevention sensitivity has a
significant negative impact on behavioral intention, suggesting that
individuals who are overly sensitive to risk prevention tend to
exhibit lower levels of willingness to adopt new technologies. This
phenomenon reflects the inhibitory effect of risk aversion
tendencies on the acceptance of emerging technologies, which
aligns with the diffusion of innovation theory, where higher
perceived risk is associated with lower technology adoption (Salles
& Farisco, 2020).

According to the Social Amplification of Risk Framework
(SARF), individuals with high risk prevention sensitivity are more
susceptible to negative risk information disseminated through
media and social channels, and thus are more likely to avoid
potential uncertainties associated with technology use. Dual-
process theory further explains this behavior by indicating that
highly risk-sensitive individuals are prone to rely on emotion-
driven heuristic processing, rather than engaging in deep cognitive
analysis of the actual risks and benefits of a given technology (Li et
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al., 2024). This cognitive pattern increases the likelihood of
technology avoidance.

Additionally, risk society theory posits that under high
uncertainty, some individuals adopt a "better safe than sorry”
attitude, leading to conservative or even resistant stances toward
new technologies. However, the relatively small effect size of this
path (p = —0.154) in the current study suggests that most members
of the public are not dominated by excessive fear or avoidance.

Therefore, targeted risk education and strategic communication
can play a crucial role in alleviating public over-sensitivity to risk,
thereby promoting more rational and balanced technology adoption.

5.2 Policy Recommendations

Based on the findings from the path analysis, this study proposes
three key policy recommendations:

First, enhance technological transparency and explainability.
Enterprises should be encouraged to develop explainable artificial
intelligence (XAI) systems, disclosing the basic principles,
decision-making logic, and risk control mechanisms of algorithms
without compromising commercial confidentiality. A government-
led framework for algorithmic transparency standards should be
established, incorporating third-party certification mechanisms to
reduce uncertainty stemming from the “black-box™ nature of AIGC
technologies.

Second, strengthen institutional trust through multi-stakeholder
collaborative governance. Governments should clarify the legal
accountability boundaries of AIGC technologies, implement
stringent safety and management standards, and foster governance
platforms that involve enterprises, research institutions, industry
associations, and public representatives. Such inclusive and
authoritative institutional frameworks are essential to consolidating
public trust.

Third, advance public education and cognitive-ecological
interventions. Proactive monitoring of risk-related information and
timely disinformation correction should be prioritized to prevent
the amplification of negative perceptions. Additionally, platform
algorithms should be optimized to reduce cognitive biases and
mitigate the “information cocoon™ effect. Nationwide public
engagement initiatives such as AI literacy campaigns and
interactive technology exhibitions should be implemented to guide
the public toward a more rational understanding of technological
risks. This would help cultivate a moderate level of risk sensitivity
and a resilient trust attitude, ultimately promoting the responsible
and rational adoption of AIGC technologies.
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